µL¼ÐÃD¤å¥ó


¹q¸£³q°Tºô¸ô¹êÅç«Ç

 

°ê¬ì·|­pµe(2024-2025)

 

­p¹º¤¤¤å¦WºÙ: ¦bB5G¦æ°Ê³q°Tºô¸ô¨Ï¥ÎÅ|¥[»P¬ï¤Õ§Þ³N°ÊºA½Õ¾ã¸ê·½°Ï¶ôªº¾÷¨î

¤¤¤å­pµeºK­n¡G
5G¦æ°Ê³q°Tºô¸ô¤¤ªº¨â¶µÀ³¥Î¤À§O¬°¼W±j«¬¦æ°Ê¼eÀW(enhanced Mobile BroadBand, eMBB)»P·¥°ª¥i¾a»P§Y®É©Ê³q°T(Ultra-Reliable and Low-Latency Communications, URLLC)¡AeMBBªºÀ³¥Î¦³ÀH¿ïµø°T(Movie on Demand, MOD)ªº¼v­µ¦ê¬yµ¥¡AMODªº½s½X¦ì¤¸²v(Encoding Bit Rate, EBR)·|ÀHµÛ®É¶¡¦Ó§ïÅÜ¡A¥»­pµeºÙ¬°Åܰʦ줸²v(Variable Bit Rate, VBR)¡AMODªºVBR¯S©Ê·|¾É­PeMBB¨Ï¥ÎªÌµLªk¥R¤À¨Ï¥Î³Q¤À°t¨ìªº¤l¸üªi(Subcarriers)¡A³Ì²×³y¦¨ºô¸ôÀW¼eªº®ö¶O¡C¥t¤@¤è­±¡AURLLCªºÀ³¥Î¦³µL¤H¾÷»PµL¤H¨®µ¥¡A¦¹ÃþÀ³¥Î»Ý­n§Y®É©Ê»P°ª¥i¾a«×ªº¶Ç°e«Ê¥]¡A·í5G°ò¦a¥x¤w±N©Ò¦³ªºµL½u¸ê·½°Ï¶ô(Resource Blocks, RBs)¥þ³¡¤À°t¥X¥h®É¡AURLLC¨Ï¥ÎªÌ¥i¯à·|¦]¬°µLªkÀò±oRB¦Ó¥¢¥h¶Ç¿é«Ê¥]©Ò»Ýªº§Y®É©Ê¡C¬°¤F¸Ñ¨M¤W­z°ÝÃD¡A¥»­pµe¦bB5G (Beyond 5G)¦æ°Ê³q°Tºô¸ô¤¤°w¹ïeMBB»PURLLC¤À§O¨Ï¥ÎÅ|¥[(Superposition)»P¬ï¤Õ(Puncturing)§Þ³N¨Ó³]­p¤@­Ó°ÊºA¤À°t¸ê·½°Ï¶ôªººtºâªk¡CÅ|¥[§Þ³N·|¨Ì§Ç(«ö·ÓÀW²vªº°ª§C)±N¤w³s½uªºeMBB¥¼¨Ï¥Îªº¤l¸üªi°µ²Ö¥[¡A²Ö¥[±o¨ìªº¤l¸üªi¥i¥H¼W¥[·s³s½ueMBB¨Ï¥ÎªÌªº¸ê®Æ¶Ç¿é²v(Data Rate, DR)¡C¥t¤@¤è­±¡A¬ï¤Õ§Þ³N·|°w¹ïeMBB¨Ï¥ÎªÌªº¤@±ø©Î¦h±ø¥¼¨Ï¥Îªº¤l¸üªi¡A±N¨ä®É¼Ñ(Time Slot)¤Á³Î¦¨¦h­Ó·L«¬®É¼Ñ(Mini-Slots)¡A³o¨Ç·L«¬®É¼ÑÅý·s³s½uªºURLLC¨Ï¥ÎªÌ¹F¦¨§Y®É©Ê»P°ª¥i¾a«×ªº¶Ç°e»Ý¨D¡C§Ú­Ì¹w­p¨Ï¥ÎNetwork Simulator 3 (NS-3)¼ÒÀÀ¥»­pµe©Ò´£¥Xªº°ÊºA¤À°t¸ê·½°Ï¶ôºtºâªk¡A§Ú­Ì¹w­p³]­p¤TºØ¤£¦P±¡¹Ò¡A¤À§O¬°¥u¨Ï¥ÎÅ|¥[¡B¥u¨Ï¥Î¬ï¤Õ¡B¦P®É¨Ï¥ÎÅ|¥[»P¬ï¤Õ¡A±q¼ÒÀÀµ²ªG¤¤¡A§Ú­Ì±NÅçÃÒ¦P®É¨Ï¥ÎÅ|¥[»P¬ï¤Õ§Þ³N¥i¥H¦³®Ä­°§C«Ê¥]¿ò¥¢²v¡B¤j´T´£°ªeMBB»PURLLC¨Ï¥ÎªÌªº¥­§¡Throughput¡B¦³®Ä¼W¥[eMBB»PURLLC¨Ï¥ÎªÌªº­Ó¼Æ¡C


ÃöÁä¦r ¡GB5G¦æ°Ê³q°Tºô¸ô¡BeMBB¡BURLLC¡BVBR¡BÅ|¥[¡B¬ï¤Õ¡C


­^¤å­pµeºK­n¡G
Enhanced Mobile BroadBand (eMBB) and Ultra-Reliable and Low-Latency Communications (URLLC) are the two major applications of 5G mobile communication networks. eMBB applications include video streaming, such as Movie on Demand (MOD), where the Encoding Bit Rate (EBR) of a video stream changes over time. In this proposal, it is referred to as Variable Bit Rate (VBR). The VBR feature of MOD causes eMBB users unable to fully utilize the allocated subcarriers, which lead to the waste of network bandwidth. On the other hand, URLLC applications, such as UAVs and autonomous vehicles, require real-time and high reliability to transmit control packets. When a 5G base station has allocated all the resource blocks (RBs), URLLC users may lose the real-time capability to transmit control packets due to the unavailability of RBs. To solve these problems, in this project, we will design a dynamic RB allocation algorithm using superposition and puncturing for eMBB and URLLC users in B5G mobile communication networks. Superposition will accumulate the unused subcarriers of the connected eMBB users in order (by frequencies). The accumulated subcarriers can offer data rate requirements for the newly connected eMBB users. On the other hand, puncturing will cut an eMBB user's one or more unused subcarriers into multiple mini-slots, which can help the newly connected URLLC users to achieve real-time and high-reliability transmission requirements. We will use Network Simulator 3 (NS-3) to simulate the proposed algorithm. From the simulation results, we will validate that using both superposition and puncturing techniques in B5G mobile communication networks can largely reduce packet loss rate, significantly increase the average throughput of eMBB and URLLC users, and effectively increase the number of eMBB and URLLC connections.


ÃöÁä¦r ¡GB5G mobile communication networks, eMBB, URLLC, VBR, superposition, puncturing.

 

   

¹q¸£³q°Tºô¸ô±Ð§÷

¹êÅç«ÇÂîÑ

ºÓ³Õ¤h½×¤å

ºô¸ô¤u¨ã

TWARENTºô¸ô´ú¸Õ

§Þ³N³ø§i

¤Í¯¸³sµ²

¹q¸£³q°Tºô¸ô¹êÅç«Ç¹q¸Ü¡G(07)5252000 ¤À¾÷ 4148.¡@¡@804°ª¶¯¥«¹ª¤s°Ï½¬®ü¸ô70¸¹ F8010